Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation
نویسندگان
چکیده
The energy of solutions of the wave equation with a suitable boundary dissipation decays exponentially to zero as time goes to infinity. We consider the finite-difference space semi-discretization scheme and we analyze whether the decay rate is independent of the mesh size. We focus on the one-dimensional case. First we show that the decay rate of the energy of the classical semi-discrete system in which the 1 − d laplacian is replaced by a three-point finite difference scheme is not uniform with respect to the net-spacing size h. Actually, the decay rate tends to zero as h goes to zero. Then we prove that adding a suitable vanishing numerical viscosity term leads to a uniform (with respect to the mesh size) exponential decay of the energy of solutions. This numerical viscosity term damps out the high frequency numerical spurious oscillations while the convergence of the scheme towards the original damped wave equation is kept. Our method of proof relies essentially on discrete multiplier techniques.
منابع مشابه
Convergence of a Two-grid Algorithm for the Control of the Wave Equation
We analyze the problem of boundary observability of the finite-difference space semi-discretizations of the 2-d wave equation in the square. We prove the uniform (with respect to the mesh size) boundary observability for the solutions obtained by the two-grid preconditioner introduced by Glowinski [6]. Our method uses previously known uniform observability inequalities for low frequency solutio...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملFinite Difference Discretizations of Some Initial and Boundary Value Problems with Interface
We analyze the discretization of initial and boundary value problems with a stationary interface in one space dimension for the heat equation, the Schrödinger equation, and the wave equation by finite difference methods. Extending the concept of the elliptic projection, well known from the analysis of Galerkin finite element methods, to our finite difference case, we prove second-order error es...
متن کاملA Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation
We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (μ(x)ux)x. This discretization satisfies a summation by parts identity ...
متن کاملWave Propagation at the Boundary Surface of Elastic Layer Overlaying a Thermoelastic Without Energy Dissipation Half-space
The present investigation is to study the surface wave propagation at imperfect boundary between an isotropic thermoelastic without energy dissipation half-space and an isotropic elastic layer of finite thickness. The penetration depth of longitudinal, transverse, and thermal waves has been obtained. The secular equation for surface waves in compact form is derived after developing the mathemat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 26 شماره
صفحات -
تاریخ انتشار 2007